Klasifikasi Traktor Pertanian

- Jumlah as * 1 berjalan (hand tractor)
 - * 2 riding
- · Jumlah as (roda) penggerak:
 - * 1 (2) --- TWD, TWT
 - * 2 (4) --- FWD, FWT
- Elemen penggerak : * Traktor roda karet
 - * Crawler tractor
- Penggunaan roda:
 - * Traksi konvensional
 - * Propulsi/cultivasi (power tiller)

Type Useful Power

- Transmisi Traction melalui gerbox (lihat gambar)
 - * Menghasilkan gerak lurus menarik bajak
 - * Power losses : < 10%
- Transmisi PTO (power take-off)
 - * menghasilkan grak putar memutar rotary
 - * Power losses : < 5%
- · Transmisi Hidrolik (oli)
 - * Menghasilkan tekanan hidrolik pengaturan lower lingk
 - * Power losses : moderate, acceptable

Sistem Transmisi Daya Traktor

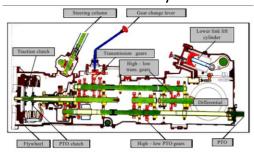


Figure 1.2: Transmission system for a conventional gear drive tractor (Kubota L345
Reproduced with permission of Kubota Tractor (Australia)

Peralatan Traksi

Roda

- Funtion:
 - $\mbox{\ensuremath{\mbox{*}}}$ support the tractor weight, limit the sinkage and the resultant rolling resistance.
 - * engage with soil, transmit the traction, limit slip
 - * provide ground ability (springing and shock absorption)
- Variables:
 - * size (diameter and width): determines tractive capacity and rolling resistance
 - * strength (ply rating): determines pressure and weight that the tyre can carry.
 - * tread pattern (thread): determines the engagement with the surface.

TRACTOR MECHANICS (NO LOSES)

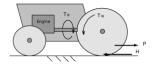
· Speed Analysis

Drive wheel diameter = D Engine speed = N_e

Overall transmission ratio

Drive wheel rotational speed $N_W = \frac{N_e}{q}$

Travel speed, V_O = Linear speed of wheels


 $= \neq D N_W$

≠ D N

TRACTOR MECHANICS (NO LOSES)

· Torque Analysis

For the tractor as shown in Figure 2.1(b): Engine torque $= T_e$ Drive wheel torque, $T_w = q T_e$

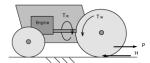
Equilibrium requires that this torque is equal and opposite to the moment of the soil reaction, H on the wheel

$$H \frac{D}{2} = T_{W} = q T_{e}$$

$$H = \frac{2 q r_e}{D}$$

If we assume that there are no other horizontal external forces acting (such as rolling resistance), equilibrium als requires that:

$$P = \frac{2 q T_e}{D}$$


(2.2)

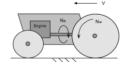
TRACTOR MECHANICS (NO LOSES)

Power Analysis

Engine power, $Q_e = 2 \neq T_e N_e$

Drawbar power, Q_d = Drawbar pull . travel speed

 $= \frac{2 q T_e}{D} \cdot \frac{\neq D N_e}{q}$ $= 2 \neq T_e N_e$


= Engine power

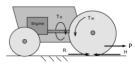
Gear 7 Maximum power envelope Gear 3 Gear 3

TRACTOR MECHANICS (W/LOSES)

Speed Analysis

Wheelslip, i = $\frac{V_0 - V_0}{V_0}$

Where, V_o = theoretical travel speed (as in Equation 2.1 above)
V = actual travel speed


Substituting for V_0 from Equation 2.1

 $V = V_0 (1-i) = \frac{\neq D N_e}{q} (1-i)$

TRACTOR MECHANICS (W/LOSES)

Power Analysis

H = P + R

Output power
ie, Drawbar power

= Input power - Power loss

Wheel power - Power lossWheel power - Drawbar power

$$= 2 \neq H \frac{D}{2} \frac{V_o}{\neq D} - PV = HV_o - PV$$

$$= \qquad H \ V_{o} \ - \ (H - R) \ V \qquad = \qquad H \ (V_{o} - V) \ + \ R \ V$$

$$= H.V_0 i + RV = HV_s + RV$$

TRACTOR MECHANICS

Tractive Efficiency

$$\eta_{t} = \frac{\text{Output power}}{\text{Input power}} = \frac{\text{Drawbar power}}{\text{Wheel power}}$$

$$= \frac{P.V}{H.V_{0}} = \frac{(H - R)}{H} (1 - i)$$

$$= (1 - \frac{R}{H}) (1 - i)$$

$$= \frac{P}{(P + R)} (1 - i)$$

TRACTOR MECHANICS

· Tractive Efficiency

- $\frac{P}{(P+R)}$ which represents a 'force' efficiency; thus when there is no rolling resistance (R = 0) this factor
- (ii) (1-i) which represents a 'speed' efficiency; again when there is no wheelslip (i = 0), this factor in the tractive efficiency = 1.

Hence, it is necessary to determine the tractive efficiency by measuring drawbar and wheel power directly by

- drawbar pull, P, with a tension load (force) cell between the tractor and a load vehicle or implement
- (iii) travel speed, V, by timing over a known distance
 (iii) wheel torque, T_w, with a torque load cell in the transmission to the driving wheels
 (iv) wheel speed, N_w, by counting wheel revolutions over a known time period
- Then tractive efficiency, $\eta_t = \frac{P V}{2 \neq T_w N_w}$

TRACTOR MECHANICS

· Engine Efficiency

We can define engine efficiency:

$$\eta_{\mathcal{E}} = \frac{\text{Power from engine}}{\text{Power in fuel}} = \frac{2 \neq \text{T}_{e} \text{ N}_{e}}{1000 \text{ FC C}}$$

= fuel consumption rate, kg/min where FC = calorific value of the fuel, kJ/kg

The maximum value for engine efficiency is dependent on and strictly limited by the thermodynamics of the engine processes. A maximum value of about 35% for a diesel engine can be expected.

TRACTOR MECHANICS

• Tractive coefficient (pull - weight ratio)

Tractive coefficient, $\psi = \frac{Drawbar pull}{Weight on driving wheels}$

Drawbar pull = Tractive coefficient x weight on wheel

TRACTOR MECHANICS

· Transmission Efficiency

We can define transmission efficiency:

$$\eta_r = \frac{Power to wheels}{Power from engine} = \frac{2 \neq T_w N_w}{2 \neq T_e N_e}$$

For good quality gears the maximum efficiency is about 98% per pair of gears; 3 pairs of gears in the change transmission and another 2 pairs in the differential / final drive, results in the maximum efficiency of $(0.98)^5 = 90\%$.

TRACTOR MECHANICS

Overall Efficiency

We can also define the overall efficiency for the tractor:

=
$$\eta_{\tau} \cdot \eta_{\rho} \cdot \eta_{\epsilon}$$

Consider typical maximum values for these variables:
$$\eta_{O} \quad = \quad \quad 0.3 \; \; x \; \; 0.90 \; \; x \; \; 0.75$$

20 %